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H I G H L I G H T S

• Operation scheduling framework using MILP optimization and demand forecasting.
• Heat pump performance degradation due to fouling addressed through digital twins.
• Framework tested on a commercial system with heat pumps, TES and cooling towers.
• Up to 5% cost savings depending on forecasting accuracy and fouling levels.
• Savings from enhanced TES use and fouling-driven adjustment of heat pump operation.
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A B S T R A C T

The integration of large-scale heat pumps and thermal energy storage can facilitate sector coupling, potentially 
lowering heating and cooling costs in industries and buildings. This cost reduction can be extended by optimizing 
the utilization of the available thermal energy storage capacity in accordance to fluctuating electricity prices. 
Although the literature offers methods for optimizing the operation of these integrated systems, they often 
overlook the impact of heat pump performance degradation over time, such as from fouling. This oversight can 
lead to suboptimal system performance and inaccurate operational cost estimates. The present study addresses 
this gap by introducing a novel operational scheduling framework that aimed to reduce the operational costs of a 
commercial large-scale heat pump system. The system comprised an open cooling tower, a thermal storage tank 
and two heat pumps affected by fouling. The framework incorporated a mixed-integer linear programming 
(MILP) model, thermal demand forecasting, and heat pump performance maps that account for varying fouling 
levels. These maps were obtained from online calibrated simulation models used as digital twins of the heat 
pumps. The results demonstrated that the proposed framework enhanced the thermal energy storage utilization 
in response to variable electricity prices and adjusted the heat pump operation based on the influence of fouling. 
This resulted in a reduction of operational costs of up to 5% compared to the conventional operation of the 
system. These savings were observed to vary depending on the forecasting accuracy and the prevailing fouling 
levels. Overall, this study demonstrates the potential of using the proposed framework for cost reduction in large- 
scale heat pump systems.

1. Introduction

Current energy systems need to transition away from fossil fuels to 
meet the international treaty to minimize human impact on climate 

change [1]. Increasing the supply of low-to-zero‑carbon electricity 
sources for heat production can reduce greenhouse gas emissions from 
the industrial and building energy sectors [2]. In the European Union 
(EU), fossil fuels make up 78% of the industrial process heat production, 
with electricity contributing only 3% [3]. In terms of the energy 
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produced for heating residential buildings in the EU, fossil fuels corre
spond to 57%, whereas electricity corresponds to 8% [4].

Large-scale electricity-driven heat pumps are among the most 
effective power-to-heat technologies that enable cross-sector integration 
[5]. Heat pumps can recover excess heat and leverage renewable energy 
sources for simultaneous heating and cooling applications such as in
dustrial processes and district heating. Moreover, heat pumps have a 
higher heat output per electric energy input than conventional heating 
technologies such as gas boilers and electric heaters [6]. Yet, widespread 
adoption of heat pumps as a substitute for other heating technologies is 
limited due to risks related to elevated electricity prices and capital costs 
[7]. In this context, decreasing the operational costs of heat pumps is key 
for increasing the cost-effectiveness of this technology.

A key operational challenge heat pumps face are faults related to the 
heat sources they utilize. In large-scale heat pumps, one of the most 
common faults is the build-up of unwanted material deposition on the 
heat transfer surface of the source heat exchanger [8]. This deposition 
process, known as fouling, can be mitigated by non-invasive cleaning 
procedures such as cleaning-in-place (CIP) techniques. However, 
Pogiatzis et al. [9] highlighted that insufficiently planned fouling miti
gation processes can accelerate the deterioration of heat exchangers and 
diminish the effectiveness of subsequent mitigation strategies.

Mixed integer linear programming (MILP) models are commonly 
used for techno-economic planning of energy systems, as indicated in 
[10]. MILP models enable to include a wide range of components, 
constraints and decision variables. The applicability of MILP models is 
limited to optimization problems that can be defined by linear mathe
matical expressions. For this reason, several studies that applied MILP 
for optimizing heat pump systems assumed a constant coefficient of 
performance (COP), such as in [11–14]. This neglects the nonlinear 
dependency of the COP on temperature and mass flow variations of the 
secondary streams of heat pumps. Verhelst et al. [15] defined a constant 
COP for the control of an air-to-water residential heat pump, which led 
to a higher electricity consumption compared to using more detailed 
COP estimates.

Several studies [16–18] proposed linear approximations of the COP 
from heat pumps. Recent studies included approximations of the COP in 
operation optimization and control frameworks for heat pump systems 
using MILP. Wirtz et al. [19] used a piecewise linearization of the COP 
dependency on the supply temperature from a district heating heat 
pump. Here, the COP was defined based on the corresponding supply 
temperature interval that was active. Krützfeldt et al. [20] proposed a 
design and operation optimization method for heat pump systems in 
residential buildings. In this approach, the relationship between the COP 

Nomenclature

Abbreviations
ACF autocorrelation function
API application programming interface
ARX autoregressive model with exogenous inputs
BAU business-as-usual
CF correction factor
CIP cleaning-in-place
CM constant method
COP coefficient of performance
CT open cooling tower
err error of the ARX
EU European Union
FMU functional mock-up unit
HP heat pump
HPS heat pump system
HS high-stage
LM linear method
LS low-stage
MILP mixed-integer linear programing
(N)RMSE (normalized) root mean square error
SCADA supervisory control and data acquisition
TES thermal energy storage

Roman symbols
A heat transfer area, m2

b constant, −
C cost, €
E thermal energy, MWh
K forecast horizon, h
N time interval, h
P pressure, bar
Q̇ heat flow rate, kW
R thermal resistance, K/kW
T temperature, ◦C
U overall heat transfer coefficient, kW/m2K
u binary variable, −
V volume, m3

V̇ volume flow rate, m3/s

Ẇ power intake, MW
X exogenous input, −
Y forecasted thermal load, MW

Subscripts and superscripts
amb ambient
clean clean
c cooling
cap capacity
con condenser
dem demand
DSH desuperheater
meas measurement
e evaporation
el electricity
eva evaporator
f fouling
h heating
in inlet
op operational
out outlet
p order of autoregressive model
s discrete element
SC sub-cooler
sim simulation
sink sink stream
source source stream
t time step
total total
th thermal
w water

Greek symbols
β calibration parameter, −
Δ change, −
η efficiency, −
θ exogenous input coefficient, −
ρ density, kg/m3

Φ autoregressive coefficient, −
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of a heat pump and the temperatures of the secondary streams was 
represented by polynomial models, which were linearized via Taylor 
series. Maier et al. [21] compared linear, piecewise linear and quadratic 
approximations of the COP for a MILP-based model predictive control 
framework for a heat pump supplying a non-residential building. They 
found that the quadratic approach led to lower operational costs and 
computational time than the piecewise linear approach, while both 
approaches provided a more accurate representation of the COP 
compared to the simplified linear model. Another model predictive 
control based on MILP was proposed by Lee et al. [22], where it was 
assumed a linear dependency of the heat output and power consumption 
of a heat pump on the compressor speed as well as the sink and source 
temperatures.

Heat pump operation optimization and control frameworks based on 
MILP are often applied under known thermal energy loads [19]– [24] or 
use forecasted weather data from external sources as inputs to physical 
or data-driven models of such loads [25,26]. Another approach used in 
[23,25,27,28] is the assumption that the thermal energy loads for a 
given period are the same as those from the previous period, also known 
as naïve forecasting. In a few studies [29,30], the MILP-based optimi
zation of heat pump systems integrated forecasting models for the 
thermal energy loads. Bünning et al. [29] used artificial neural networks 
to forecast the heating demand of a building. This demand was either 
covered with a heat pump or a thermal storage tank, which were 
operated through a model predictive controller. Nielsen et al. [30] 
applied an autoregressive forecasting model for the prediction of the 
heat demand for district heating operational planning. Here, the oper
ational costs of heat pumps and electric boilers were compared over a 
forecasted period of 36 h.

Existing literature on operation scheduling and control for heat 
pumps lacks consideration for time-dependent performance degradation 
due to e.g. aging of components or faults like fouling. One model-based 
approach to account for performance degradation is the use of simula
tion models capable of adjusting at least part of their structure based on 
measured data, also referred to as digital twins. Examples of digital 
twins used for heat pump and refrigeration systems are included in a 
number of experimental studies [31]– [33]. Klingebiel et al. [31] used a 

self-optimizing model to implement defrosting cycles in a residential air- 
source heat pump. Chen et al. [32] monitored the degradation of the 
desiccant sorption material inside an absorption chiller through a digital 
twin. The digital twin was also used to optimize the COP of the chiller. 
Zhang et al. [33] proposed a model predictive control integrated with a 
digital twin to adjust the operation of a heat pump in real-time.

Only a few studies were found in the literature where performance 
degradation was monitored in commercial heat pumps used in industrial 
and district heating applications [34,35]. No previous studies were 
found where the degradation of the COP due to fouling was included for 
optimizing the operation of heat pump systems.

1.1. Contributions of this work

The present study aims at mapping the potentials for reducing the 
operational cost of large-scale heat pump systems through an online 
operation scheduling framework using digital twin technology. This 
framework integrated thermal demand forecasting and applied a MILP 
model for the optimization of a commercial large-scale heat pump sys
tem. The nonlinear relation between the COP of the heat pumps and 
their thermal energy loads was represented through a novel perfor
mance map. Unlike previous studies, this performance map was derived 
from a dynamic simulation model that was calibrated online to account 
for the time-dependent impact that fouling had on the COP.

2. Methods

The scheduling optimization framework was developed and tested 
on the large-scale heat pump system shown in Fig. 1, referred to as HPS 
hereafter. This system is used for district heating supply in Copenhagen, 
Denmark. The supply and return temperatures in the ink stream of the 
HPS are approximately 68 ◦C and 53 ◦C, respectively. At the same time, 
the HPS supplies industrial cooling to a biochemical plant, where it is 
required that a water stream is cooled down from around 23 ◦C to 18 ◦C.

The HPS is comprised of two identical heat pumps connected in 
parallel, an open cooling tower and a water tank used as thermal energy 
storage (TES). Each heat pump is an off-the-shelf two-stage unit with a 

Fig. 1. Diagram of the components and streams in the HPS that were assessed in this study.
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nominal heating capacity of 2 MW that uses ammonia as working fluid. 
The desuperheater, condenser, receiver and subcooler are included in a 
single shell-and-plate heat exchanger unit. The high and low stages are 
connected by an open intercooler. Each of the stages include a recip
rocating compressor with a variable speed drive and an electronic 
expansion valve.

The evaporator is a shell-and-plate heat exchanger that is in direct 
contact with the water stream from the biochemical plant. This stream is 
contaminated with organic and inorganic substances that lead to fouling 
on the source side of the evaporator. Such substances result from the 
operation of the biochemical plant, and their exact chemical composi
tion is unknown by the operator of the HPS and the authors of this study. 
It is not possible to open the evaporator for the removal of fouling. For 
this reason, a chemical cleaning-in-place (CIP) system is used, which 
does not require to dismantle the evaporator. This CIP process consists of 
the circulation of basic and acid solutions through the evaporator at 
different intervals for the removal of organic and inorganic substances, 
respectively. The frequency by which the CIP is used on each heat pump 
is determined heuristically by the HPS operator based on observations of 
the evaporation pressure.

The open cooling tower has a nominal cooling capacity of 8.3 MW 
and is comprised of 12 individual units. The fan in each unit has a 
nominal power consumption of 13 kW. The nominal flow rate as well as 
the inlet and outlet temperatures of the water in the cooling tower are 
1351.1 m3/h, 26.3 ◦C and 21 ◦C, respectively. The air wet bulb tem
perature and mass flow rate have design average values of 18 ◦C and 350 
m3/h, respectively.

The maximum and minimum temperatures of the water in the TES 
are 30 ◦C and 18 ◦C, respectively. The company owning the biochemical 
plant, which receives cooling from the HPS, did not reveal the specific 
volume of the TES. However, it was described that the purpose of the 
TES was to handle short variations in the water stream temperature to be 
cooled down caused by cleaning procedures of the equipment inside the 
plant. These variations occur as often as three to four times a day. In this 
context, it was assumed that the volume of the TES should not exceed the 
required cooling demand for six hours of HPS operation, which is 
equivalent to approximately 1000 m3.

2.1. Business-as-usual operation

The current method to operate the HPS relies on a rule-based control 
strategy. The heat pumps operate unless undergoing maintenance. Their 
operation is dependent on the cooling demand, and the operation 
requirement from the district heating network aggregator. The TES is 
used as a cold storage. When the cold water stream at the outlet of the 
heat pumps exceeds the TES temperature, the TES stores heat. 
Conversely, if the cold water stream is below 18 ◦C, the TES is releases 
heat, which can be absorbed by the heat pumps or the cooling tower.

2.2. Online operation scheduling framework

The structure of the proposed framework for online operation 
scheduling of the HPS is shown in Fig. 2. The framework calculates a 
cost-effective schedule for operating the HPS as well as the costs and 
savings related to using this schedule compared to the business-as-usual 
operation of the system. This makes use of the existing infrastructure for 
storage and retrieval of operational data from the system, as well as 
weather data and electricity price data from publicly available sources.

The scheduling optimization is performed through a MILP model. 
Here, the operational cost of the HPS was minimized online by the use of 
a moving window approach. In this method, the optimization problem is 
solved repeatedly over consecutive time intervals, each with a fixed 
length of three days. The window, containing operational data, shifts 
through time, allowing for continuous adaptation and refinement of the 
operation schedule.

The heating and cooling demands driving the operation of the HPS 
were forecasted to determine an optimal operation schedule of the 
system in advance. This allows for the implementation of preventive 
measures rather than reactive responses during the operation of the 
HPS.

The COP of the heat pumps in the HPS under nominal and part-load 
operation were represented in the MILP model through a COP map. The 
COP map was derived from an off-design simulation model developed in 
the language Modelica [36]. The use of a simulation model enabled to 
represent the performance of the heat pumps under different thermal 
loads and fouling levels and compare to those present in the measured 
data retrieved from the HPS.

Fig. 2. Schematic of the proposed framework for operation scheduling.
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2.3. Data retrieval and pre-processing

The data used in the proposed framework was retrieved remotely 
through Python from three different sources. These sources included a 
cloud data management system to collect operational data from the HPS 
as well as weather data and power system data services, which are 
available by means of application programmable interfaces (APIs).

Two five-day periods of HPS operation were used in the present 
study. These periods are referred to as period A and period B hereafter. 
As shown in Table 1, the cooling and heating demands from periods A 
and B were different, as well as the electricity prices. The mean heating 
demand shown in Table 1 was only related to the operation of the HPS 
and did not include the entire district heating network. Analysing the 
heating supplied by other technologies in the network, such as biomass 
boilers and combined heat and power plants, was beyond the scope of 
this study. The operation of the HPS was continuous during the opera
tional periods A and B, which was a reason for their selection in the 
present study.

2.3.1. Cloud data management
The HPS is operated through a supervisory control and data acqui

sition (SCADA) system. The SCADA system was connected to the cloud 
computing service from Microsoft called Azure [37]. This enabled the 
remote access of operational data, which was comprised of data from 
sensing devices, actuators and control settings. This only included data 
from the two heat pumps and the cold and hot water streams in the HPS. 
Therefore, the operation of the open cooling tower and the TES was not 
monitored in real-time and only the design information from these 
components described in Section 2.1 was available.

The use of cloud computing technologies for remote monitoring and 
storage of operational data from industrial equipment has become 
increasingly popular in the last years, as mentioned in [38]. In the 
present study, it was only possible to retrieve data from the HPS to the 
API and not viceversa. The operational data from the HPS was collected 
at a one-minute interval and then converted into hourly average values.

2.3.2. Weather data and power system data services
The proposed framework applied the historical and predicted values 

of the outdoor air temperature (Tamb) and day-ahead electricity prices 
(cel) in Copenhagen, Denmark. The value of Tamb was retrieved from the 
Danish Meteorological Institute through their Open Data API [39]. The 
day-ahead electricity prices were taken from the ENTSO-E API (Euro
pean Network of Transmission System Operators for Electricity) [40]. 
These prices included a transmission grid tariff of 59 DKK/MWh and a 
system tariff of 24 DKK/MWh. The forecasting uncertainties of Tamb and 
cel were neglected and the future values of these parameters were 
directly retrieved from [39,40], respectively. The data retrieved covered 
a three-day horizon.

2.4. Demand forecasting

The forecast horizon was three days and two days of historical 
operational data were used for the predictions. The forecasted heating or 
cooling demand over a horizon k was given in forecast of average values 
for every hour, which was represented by Yt+k = {Q̇ dem

t+1 , Q̇ dem
t+2 , …, Q̇

dem
t+k }.

Three forecasting methods were used with different complexity 
levels. The first method applied the mean value of the heating or cooling 
demands over a period n (Ῡt,n) as a constant forecasted value. This 
method was named CM (constant method) and is described by Eq. (1). 

Yt+k = Yt,n (1) 

The second forecasting method was referred to as LM (linear 
method), where a linear regression model was fitted between the his
torical heating and cooling demands and the outdoor air temperature. 
This model was used for predicting the future heating and cooling de
mands given forecasted values of the outdoor air temperature, as shown 
in Eq. (2). 

Yt+k = a0 + a1 • Xt+k + et+k (2) 

where a0 and a1 are the regression coefficients obtained over a period n, 
Xt+k = {Tamb,t+1, Tamb,t+2, …, Tamb,t+k} is the time-series of outdoor air 
temperatures for the forecast horizon k, and et+k is the forecasting error.

The third forecasting method applied an autoregressive model with 
exogenous inputs, known as ARX. As described by Madsen [41], the AR 
part of the model uses lagged (or prior) states of the variable to forecast, 
whereas the exogenous input (i.e. the X term) represents a variable that 
is known in the future. In this study, the variable to forecast was either 
the heating or cooling demand. The exogenous input was the outdoor air 
temperature. This was included as historical and forecasted time-series 
data in the model and their retrieval was described in Section 2.3.2. 
The general formulation of an ARX model of order p is shown in Eq. (3). 
The value p defines how many prior states are used for forecasting. 

Yt+k = b+Φ1 • Yt− 1 +Φ2 • Yt− 2 +…+Φp • Yt− p + θ1 • Xt− 1 + θ2

• Xt− 2 +…+ θp • Xt− p + et+k (3) 

where b is a constant, Yt-1, Yt-2… Yt-p are the lagged values of the heating 
or cooling demand, Φ1, Φ2… Φp are the autoregressive coefficients, θ1, 
θ2, …, θp are the coefficients for the outdoor air temperatures, et+k is the 
error of the model, and Xt-1, Xt-2… Xt-p are the lagged values of outdoor 
air temperatures.

The order of the ARX (p) is given by the time dependency of Yt
on its lag values. This was analyzed through the autocorrelation 

function (ACF) of the heating and cooling demands, shown in Fig. 3 a) 
and b), respectively. Both the ACF and ARX model were implemented in 
Python through the module statsmodels [42].

Fig. 3 a) shows that, after the first lags, the highest values of the ACF 
for the heating demand were found at approximately lags = 12 and 24. 
In this case, the order of the ARX was defined as p = 12. The order for the 
ARX for forecasting the cooling demand was defined as p = 6, given the 
time dependency of the ACF for this parameter, shown in Fig. 3 b).

The root mean square error (RMSE) and the normalized root mean 
square error (NRMSE) were used as evaluation measures for the per
formance of the forecasting methods. These errors were calculated based 
on measured (Yt) and simulated values (Ŷt) of the heating and cooling 
demands, as shown in Eq. (4) and Eq. (5). 

RMSEk =

(
1
k
∑k

t=1
(Yt − Ŷt)

2

)0.5

(4) 

Table 1 
Summary of the main characteristics of the two operational periods analyzed.

Operational 
period

Start date End date Mean heating demand, 
MWh/day

Mean cooling demand, 
MWh/day

Mean hourly day-ahead 
electricity price, €/MWh

Mean hourly outdoor air 
temperature, ◦C

A August 13, 
2022

August 18, 
2022

75.1 62.9 484.0 22.9

B October 29, 
2022

November 4, 
2022

79.9 65.7 93.4 12.6
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NRMSEk =
RMSEk

Yk
(5) 

The results of the scheduling optimization framework with and 
without the use of forecasting were compared with the business-as-usual 
operation of the HPS. This enabled the possibility to separate the un
certainties related to the forecasted heating and cooling demands. In this 
context, the framework without forecasting led to an optimized schedule 
of the HPS assuming that the heating and cooling demands were known.

2.5. Heat pump performance modelling

This section describes the use of a heat pump simulation model 
calibrated online for the development of the COP maps used for oper
ation scheduling.

2.5.1. Heat pump simulation model
The heat pump simulation model, developed in Modelica, was 

implemented through the software Dymola [43] and the library TIL 
Suite [44]. This model is described in detail in a previous study [34]. 
This model was converted into a functional mockup unit (FMU) and 
simulated in Python by means of the FMPy module [45]. The inputs for 
the model included the volumetric flow rates of the source and sink 
streams (V̇source and V̇sink, respectively), the inlet temperatures from the 
source and sink streams (Tsource,in and Tsink,in, respectively), along with 
the set points for intermediate pressure and source outlet temperature.

2.5.2. Online model calibration
The simulation model was adjusted based on measured data through 

two calibration processes: initial calibration and fouling calibration. A 
detailed description of the calibration processes is presented in [34]. In 
the initial calibration, the adjusted parameters were correction factors 
for the heat transfer coefficients in the desuperheater, condenser, sub
cooler and evaporator (CFDSH, CFcon, CFSC and CFeva, respectively), as 
well as the integral time constants in the PI-controllers for the high-stage 
and low-stage compressors (τcom,HS and τcom,LS, respectively). The initial 
calibration used operational data from the site acceptance test period. 
These data were available only from one heat pump, where its operation 
was adjusted under controlled conditions without the influence of 
fouling. Therefore, the results from the simulation model adjusted 
through the initial calibration were the same for both heat pumps in the 
HPS.

The fouling calibration relied on operational data obtained online 
from each heat pump. Here, the parameter adjusted was the thermal 
resistance related to fouling in the evaporator (Rth,f ). This study focused 
only on fouling effects on the source side of the evaporator, as it was 
identified as a challenge by the HPS operator and had available mea
surements (e.g., evaporation pressure) to characterize fouling. There 
was insufficient information and measurements to analyze fouling ef
fects on other components.

In this study, the periods chosen for fouling calibration were the last 

day of operation in periods A and B, described in Table 1. The final 
operational day was selected arbitrarily to serve as a representative 
example for the entire operational period. This choice was made in order 
to minimize the computational requirements during the fouling cali
bration process.

The optimization used for the calibration processes was performed 
through the Python module AixCaliBuHA [46] and applied the Powell 
optimization method available in the module SciPy [47]. The goal of the 
calibration processes was to minimize the normalized root mean square 
error between measured and simulated outputs, named calibration tar
gets (γ), over a period ‘n’. This minimization was performed iteratively 
to identify the value of the selected calibration parameters (β) that 
minimized the objective function shown in Eq. (6). The normalization 
was based on the mean of the measured calibration target over the 
period ‘n’ (γ). The relevance of a target in the calibration processes was 
represented with a weighting factor (w). For the initial calibration, the 
targets included Q̇sink, the total power intake from both compressors 
(Ẇcom), and the evaporation pressure (pe) with equal weight. In the 
fouling calibration, the only target was pe. 

minf(β) =
∑n

i=1

(

wi • γmeas
− 1 •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n− 1 •
∑n

i=1

(
γsim,i(β) − γmeas,i

)2

√ )

(6) 

2.5.3. Performance mapping tool
The calibrated simulation model was applied to develop a COP map 

of each heat pump. This map described the COP as a function of the load 
of a heat pump for a specific period of operation. A COP map enabled the 
calculation of the heat pump performance at different heat loads in the 
MILP model without the direct use of the simulation model. The 
different heat loads were obtained by varying the volume flow rate in 
the sink and source streams used as inputs to the model from their 
corresponding nominal values to 30% of those values. The variability of 
V̇sink and V̇source during those operational periods was much larger than 
that for Tsink,in and Tsource,in. This variability was described by the index 
of dispersion, namely the division between the variance of each time- 
dependent parameter over its mean value, shown in Table 2.

The relation between the simulated COP over different heat loads 
was represented by a quadratic regression model, which was then dis
cretized. In this discretization, the heat load of the COP map was divided 
into equal intervals. The COP of each discrete interval was defined to be 
constant, maintaining a linear relationship between the heat capacity 

Fig. 3. Example of the autocorrelation function (ACF) of the heating demand a) and cooling demand b) for period B.

Table 2 
Index of dispersion for the measured input variables for the simulation model.

Operational period Heat pump Tsource,in Tsink,in V̇sink V̇source

A 1 0.02 0.01 0.68 0.36
2 0.02 0.01 0.59 0.43

B 1 0.01 0.05 8.03 2.68
2 0.01 0.05 8.08 3.90

J.J. Aguilera et al.                                                                                                                                                                                                                              Applied Energy 376 (2024) 124259 

6 



and the power intake related to each interval, described in Section 2.6.3.

2.6. Schedule optimization

This section includes a description of the MILP used for optimizing 
the operational schedule of the HPS. Here, the variables of the model are 
presented with bold symbols. The MILP was solved using a time-step of 
1-h and the selected solver was Gurobi [48].

The MILP model included the main components of the HPS system, 
namely the two heat pumps, the open cooling tower, the TES as well as 
the dynamic heating and cooling demands. The hydraulic pumps in the 
HPS were neglected. This was due to their low impact on the total power 
consumption.

2.6.1. Objective function
The objective function of the MILP model was the minimization of 

the total operational cost of the HPS Cop over a period k. As shown in Eq. 
(7), Cop was comprised of the electricity consumption from the heat 

pumps ẆHP1
t and ẆHP2

t , as well as the electricity consumption from the 

fans in the open cooling tower ẆCT
t . These variables were multiplied by 

the electricity price cel.t for every hour t of operation. 

min
(
Cop
)
= min

(
∑k

t=1

(

ẆHP1
t + ẆHP2

t + ẆCT
t

)

• cel,t

)

(7) 

2.6.2. System level constraints
Eq. (8) and Eq. (9) show the thermal energy balances on the heating 

side and the cooling side of the HPS, respectively. Here, the heating 

demand Q̇dem,h
t needed to be covered in each period t by the heat flow 

rejected from any of the heat pumps, i.e. Q̇HP1
t and/or Q̇HP2

t . The cooling 
demand was the sum of the heat flow to the evaporator of the heat 

pumps, the heat flow dissipated in the cooling tower Q̇CT
t and the heat 

flow to the TES Q̇TES
t . 

Q̇dem,h
t = Q̇HP1,h

t + Q̇HP2,h
t ,∀t ∈ {1,…, k} (8) 

Q̇dem,c
t = Q̇HP1,c

t + Q̇HP2,c
t + Q̇CT

t + Q̇TES
t ,∀t ∈ {1,…, k} (9) 

2.6.3. Heat pumps
The relationship between the heat output delivered by a heat pump 

and its power intake was determined by the COP map of that heat pump. 
This map was discretized according to the formulation presented in 
Appendix A. Fig. 4 exemplifies how the COP for a given capacity of a 

heat pump was determined through a COP map with four discrete ele

ments. In this case, the heating delivered by heat pump 1 (Q̇HP1,h
t ) was 

above the capacity of the first segment (Q̇HP1,h,cap
s1 ) and below that of the 

second segment (Q̇HP1,h,cap
s2 ). Therefore, the resulting COP corresponded 

to that of the second segment (COPHP1
s2 ). An increase in the number of 

discrete elements in a COP map will reduce the COP estimation error, 
shown in Fig. 4.

2.6.4. Open cooling tower

The electricity consumed by the fans in the open cooling tower (ẆCT
t ) 

was equal to the heat flow dissipated in this component (Q̇CT
t ) multiplied 

by the ratio between its nominal power consumption and its nominal 
cooling capacity (ηCT,fan), as represented by Eq. (10). The value of ηCT,fan 

was assumed to be 2%, which was taken from the design characteristics 

of the cooling tower included in Section 2.1. Q̇CT
t was assumed to be 

unconstrained and thereby represented the cooling demand that was 
neither covered by the heat pumps nor by the TES. 

ẆCT
t = Q̇CT

t • ηCT,fan,∀t ∈ {1,…, k} (10) 

2.6.5. Thermal energy storage, TES
The sensible thermal storage capacity of the TES (ETES,cap) was 

calculated based on Eq. (11). This capacity depended on the difference 
between the maximum and minimum temperature of the TES 
TTES,max-TTES,min, its volume VTES as well as the water density ρwater and 
specific heat cwater

p . The values of TTES,max and TTES,min were 30 ◦C and 
18 ◦C, respectively; VTES was 200 m3 and was varied up to 1000 m3 

within a sensitivity analysis; whereas ρwater and cwater
p were 998 kg/m3 

and 4.18 kJ/kg•K, respectively. 

ETES,cap = VTES • ρwater • cwater
p •

(
TTES,max − TTES,min) (11) 

Eq. (12) was applied to determine the stored thermal energy in the 
TES ETES

t at any time-step t. This depended on the energy stored in the 
previous time-step ETES

t− 1 and the heat flow to and from the TES, denoted 

by a positive or negative value of Q̇TES
t , respectively. Given that the 

temperatures of the TES were equal or below 30 ◦C, it was assumed that 
its heat losses to the environment were negligible. Moreover, it was 
assumed that at the start and end of the evaluation period (i.e. t = 1 and 
t = k) the thermal energy stored in the TES was equal to half of its total 
capacity. 

Fig. 4. Example of the discretized COP map of heat pump 1 with four discrete elements. The heating capacity delivered by the heat pump and its corresponding COP 
are shown in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ETES
t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.5 • ETES,cap if t = 1
ETES

t− 1 − Q̇TES
t− 1 • Δt if 1 < t < k

0.5 • ETES,cap if t = k
(12) 

3. Results

3.1. Model calibration

The results from the calibration of the simulation model are pre
sented in Table 3. This includes the results from the initial calibration 
performed once using the site test period data and the fouling calibration 
performed twice on each heat pump, were the operational data from 
periods A and B were applied. Among the correction factors adjusted in 
the initial calibration, the correction factor related to the evaporator 
heat transfer coefficient required the largest adjustment. The relatively 
large values obtained for the time-constants of the compressor control
lers was attributed to the slow dynamics present in the HPS. The fouling 
calibration showed that the thermal resistance related to fouling was 
around 14% larger in heat pump 1 compared to heat pump 2 in period A. 
In period B, the fouling thermal resistance of heat pump 2 exceeded that 
of heat pump 1 by approximately 25%.

3.2. Heat pump performance mapping

Fig. 5 shows how the average computation time for solving the MILP 
optimization and the RMSE in estimating COP were affected by varying 
the number of discrete elements used to define COP maps of both heat 
pumps in the HPS. More discrete elements required a longer period to 
solve the optimization, which also decreased the RMSE related to the 
estimation of the COP. As seen in Fig. 5, using more than approximately 
35 discrete elements did not show a reduction of the RMSE and 
increased the computation time. Based on this, the COP maps used in 
this study applied 35 discrete elements.

The COP maps for heat pumps in the HPS are shown in Fig. 6. These 
maps illustrate the performance of the heat pumps with and without the 
influence of the fouling-related thermal resistances during periods A and 
B (shown in Table 3). Additionally, the maps include the RMSE for the 
COP estimation, along with the average sink and source inlet tempera
tures for period A (50 ◦C /27 ◦C) and period B (49 ◦C /25 ◦C). The results 
showed that an increased level of fouling in a heat pump led to a 
reduction of its COP for a given normalized heat load, as shown in Fig. 6.

3.3. Forecasting

The forecasting methods presented in Section 2.4 were compared in 
terms of the errors obtained from the forecasted heating and cooling 
demands that drive the operation of the HPS. Fig. 7 shows a comparison 
between the forecasted heating and cooling demands for 3-day forecast 
horizons for the operational periods A and B. These results show that the 
forecasted heating demand from the ARX and the LM generally followed 
the heating demand, particularly on the first forecasted day. The fore
casted cooling demands from the CM, LM and ARX were constant and 
with similar values. Period A contained sudden reductions of the heating 
and cooling loads which were not stationary and did not depend on the 
outdoor air temperature. These variations were not captured by any of 
the forecasting methods.

Table 4 displays the errors derived from the forecasting methods for 
the last three days of operation in periods A and B. The heating demand 
forecasts from the ARX method yielded NRMSE values between 0.1% 
and 0.5%-points lower than those obtained from the CM and LM 
methods. For the forecasted cooling demand, the ARX method consis
tently exhibited the lowest RMSE across most cases presented in Table 4. 
The variations in the cooling demand were neither stationary nor 
influenced by outdoor air temperature, contributing to the CM out
performing the LM and ARX.

3.4. Comparison between scenarios

Fig. 8 shows the total cooling provided by each component in the 
HPS over the last three days of operation in periods A and B. This in
cludes the results from the BAU operation and from the optimization 
without forecasting and with forecasting using the ARX method. The 
schedule optimization led to an increase of the cooling provided by the 
TES compared to the BAU operation. This increase without forecasting 
was 1.7 and 0.4 percentage points for periods A and B, respectively. 
With forecasting, such increase reached 5.5 and 1.2 percentage points 
for periods A and B, respectively. The optimization also adjusted the 
operation of both heat pumps in the system based on the extent to which 
their performance was affected by fouling (seen in Fig. 6). As shown in 
Fig. 8, a larger fraction of the total cooling supplied was provided by the 
heat pump less affected by fouling, which in period A was heat pump 2 
and in period B was heat pump 1.

The relation between the electricity prices and the operation of the 
HPS is shown in Fig. 9 and Fig. 10 for periods A and B, respectively. This 
includes the temperature of the TES, the normalized heat load of both 
heat pumps, along with the operational cost for the BAU operation and 
the schedule optimization without forecasting and with the ARX fore
casting. Fig. 9 and Fig. 10 show that under the optimization cases, the 
temperature of the TES increased in periods where the electricity price 
increased and decreased in periods where the electricity price was 
reduced. In contrast to the BAU operation, the schedule optimization 
involved multiple cycles in which the temperature of the TES reached its 
minimum and maximum values over the three days of operation. This 
led to lower operational costs in the optimized operation of the HPS 
compared to its BAU operation. A larger cost reduction was achieved 
during period A, characterized by higher electricity prices compared to 
period B. Additionally, the BAU operation in period A exhibited less 
cooling provided by the TES and a larger fraction of the cooling supplied 
by the cooling tower compared to period B, as seen in Fig. 8. This 
contributed to a comparatively smaller reduction in operational costs 
when using the optimization on period B than on period A.

3.5. Influence of fouling and TES volume

Fig. 11 shows the total operational costs of the schedule optimization 
framework and its savings compared to the BAU case for periods A and B 
for TES volumes between 200 m3 to 1000 m3. Fig. 11 shows the relative 
change between the total operational costs related to a TES volume of 

Table 3 
Results from the initial model calibration and fouling calibration for both heat 
pumps in the HPS.

Calibration 
process

Operational 
period

Heat 
pump

Calibrated 
parameter

Value NRMSE

Initial 
calibration

Site 
acceptance 
test

1 and 
2

CFeva 1.5 4.4%

CFDSH 1.2 1.6%
CFcon 1.0 1.2%
CFsub 0.7 2.3%
Ticom,HS 1461.4 s 6.0%
Ticom,LS 1944.1 s 5.4%

Fouling 
calibration

A 1 Rth,f 2.5•10− 3 

K/kW
3.7%

2 Rth,f 2.2•10− 3 

K/kW
2.2%

B 1 Rth,f 2.0•10− 3 

K/kW
3.4%

2 Rth,f 2.5•10− 3 

K/kW
4.1%
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200 m3 and operational costs linked to higher TES volumes, named 
relative cost difference. These results included the heat pumps affected 
by the fouling thermal resistance values presented in Table 3. As seen in 
Fig. 11, the savings related to the schedule optimization were greater in 
period A than in period B. These savings were around 5.2% when using 
forecasting and 3.4% without forecasting for period A, considering a TES 
volume of 200 m3. For the same TES volume, the savings for period B 
were 1.6% and 0.7% with and without the use of forecasting, respec
tively. For any given case, the difference between savings using 200 m3 

and 1000 m3 was lower than 0.2%.
The influence of the thermal resistance on the operational costs due 

to fouling and savings derived from the operation scheduling framework 
are shown in Fig. 12. Here, the fouling thermal resistance affecting both 
heat pumps in the HPS were assumed to be equal. The relative cost 
difference specifically represents the relative change between the total 
operational costs related to a zero fouling level and those connected with 
non-zero fouling levels. The results from Fig. 12 showed that not 
considering fouling caused an overestimation of the savings obtained 
when using the operation scheduling framework rather than BAU 
operation. An increase of the fouling thermal resistance above the levels 
observed in the present study (i.e. between 2•10− 3 K/kW and 2.5•10− 3 

K/kW, as seen in Table 3) increased the operational costs. This increase 
was up to approximately 7% to 8% for a fouling thermal resistance of 
4•10− 3 K/kW. At that fouling level, the savings derived from the 
framework were reduced by approximately 2 percentage points 
compared to the case without the presence of fouling. This was caused 
by keeping the fouling thermal resistance constant in the business-as- 
usual operation and increasing it in the proposed framework.

4. Discussion

The replacement of the rule-based business-as-usual operation of the 
HPS with the proposed online operation scheduling framework was 
observed to reduce the operational costs of such a system up to 5.2% 
with forecasting and 3.4% without forecasting. The cost reduction was 
driven by two key factors. The first factor was leveraging the TES 
thermal storage capacity in response to varying electricity prices. The 
second factor was attributed to switching between the two heat pump 
units based on the impact of fouling on their performance. Both factors 
aimed to decrease the cooling demand supplied by the cooling tower, 
which was greater decreased in period A compared to period B (see 
Fig. 8). The first factor had a greater impact on cost savings than the 
second, as the difference in fouling-related thermal resistances between 
the heat pumps was larger in period B than in period A (see Table 3). 
However, it is not possible to derive conclusions on the relative impor
tance of each factor on cost savings. This is because such a comparison 
depends on variations in boundary conditions such as fouling levels and 
thermal demands across different periods.

Optimizing the utilization of the thermal storage tank did not result 
in significant differences in operational costs, as shown in Fig. 11. In the 
HPS used as a case study, a significant portion of the cooling demand 
was met by the heat extracted from the heat pumps used for district 
heating supply. Due to the high heating demand during the analyzed 
periods, the heat pumps operated close to their nominal load. Hence, the 
influence of the optimization on operational costs, whether through 
thermal energy storage utilization or adjusting heat pump operation, 
was limited. However, the proposed framework may offer more signif
icant cost savings in heat pump systems with less constrained opera
tional conditions than those encountered in our present study.

The online scheduling framework in this study was developed based 

Fig. 5. Relation between the number of discrete elements and the RMSE derived from the COP map from both heat pumps as well as the average computation time 
related to solving the MILP optimization process.

Fig. 6. COP map for heat pump 1 (a) and heat pump 2 (b). The figures were cut to show the range between the minimum normalized heat load used to build the maps 
(0.5) and its maximum value (1). The maps include the sink and source temperatures in each period, as well as the RMSE. Rth,f: evaporator thermal resistance 
attributed to fouling.
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on existing resources, namely the data from the SCADA system in the 
HPS, along with openly available information from weather and elec
tricity market platforms. Additionally, a heat pump simulation model 
from a previous study [34] was employed. While this demonstrates the 
potential for reusing simulation models, it is important to note that the 
model used in this study was not specifically designed for an online 
optimization framework. As opposed to detailed simulation models, 
simpler models may be more appropriate for such tasks, requiring less 
assumptions for their development and less time for their simulation.

The difference between the simulation results from the two heat 
pumps in the HPS was only attributed to the fouling thermal resistance. 
Neglecting factors in the simulation model such as the presence of oil 
and non-condensables in the refrigerant side, non-nominal refrigerant 

Fig. 7. Heating and cooling demands from periods A and B, where the last three days were forecasted by using CM, LM and ARX. The axes in the plots are not in scale 
to illustrate the differences between the results from the forecasting methods. Pred.: predicted; Meas.: measured.

Table 4 
Errors obtained from the forecasting of the heating and cooling demands by 
using CM, LM and ARX.

Period Forecasted parameter CM LM ARX

RMSE / NRMSE, kW / %

A Heating demand 256 / 8.0 240 / 7.6 240 / 7.5
Cooling demand 197 / 7.4 195 / 7.3 190 / 7.2

B Heating demand 87 / 2.6 97 / 2.9 69 / 2.1
Cooling demand 35 / 1.3 37 / 1.4 37 / 1.3

Fig. 8. Cooling supplied by the different components in the HPS when considering the BAU operation or the MILP optimization with and without forecasting. Periods 
A and B are shown in a) and b), respectively.
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charge and heat losses in the components, led to discrepancies between 
simulated and measured values. The inclusion of these additional 
sources of discrepancy requires increasing the number of calibration 
parameters and targets in the online calibration. This would raise the 
number of assumptions needed (e.g. selection of weighting factors, 
calibration periods) and the computational requirements for the online 
calibration process.

The simplifications made regarding the operation of the TES and the 
open cooling tower likely influenced the results of this study. These 
simplifications included neglecting heat losses and thermal stratification 
in the TES, as well as the dependency of the cooling tower capacity on 
outdoor conditions and water inlet streams. Using more detailed models 
of the thermal storage tank, as done in several related studies [49–51], 
may lead to more accurate estimations of the system's operation costs 
than those presented in Section 3.4. However, the use of detailed models 
will also require longer computational times than the results shown in 

Fig. 5. Accounting for phenomena such as thermal stratification neces
sitates design information of the TES, which was not available from the 
HPS assessed in this study. This represents an opportunity to enhance 
the proposed framework in future studies.

The COP maps employed in this study are simple to generate, of
fering rapid estimates of heat pump performance and compatibility with 
MILP models. However, their accuracy may be limited when applied to 
diverse boundary conditions not covered in the operational periods 
assessed in this study. While changes in the volume flow rates of the 
secondary streams were assumed to have the largest effect on the COP 
(as observed in Table 2), other parameters could exert a greater influ
ence on the COP during different operational periods. This may result in 
different COP maps structures (e.g. linear, quadratic), as noted by Pieper 
et al. [18].

The simulation and calibration steps in the proposed operation 
scheduling framework were related to modelling errors, which were 

Fig. 9. BAU operation compared to the MILP optimization with and without forecasting for period A.

Fig. 10. BAU operation compared to the MILP optimization with and without forecasting for period B.
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represented by the NRMSE values shown in Table 3. In this context, if an 
operational period under assessment (e.g. period A) enabled charac
terizing the COP over a wide range of loads (e.g. from 0.5 to 1), it would 
be preferred to use the operational data from that period directly to 
develop the COP maps rather than a simulation model. The use of a 
simulation model for developing the COP maps enabled to calculate the 
COP of the heat pumps at loads that were not observed from the 
measured data. This approach is particularly useful for commercial heat 
pumps like the HPS assessed in this study, where the operation of the 
heat pump cannot be modified to obtain a representative COP map from 
a given operational period.

When contrasting the MILP optimization results with and without 
forecasting, it was noted that the operational cost savings related to the 
online operation scheduling framework were overestimated when ac
counting for the forecasting errors (see Fig. 11 and Fig. 12). Larger 
forecasting errors than those described in this study (see Table 4) are 
expected for longer forecast horizons than three days and when ac
counting for the uncertainty of the forecasted electricity prices and 
outdoor air temperatures. In this context, it is unlikely that the proposed 
online operation scheduling framework will provide accurate results for 
forecast horizons beyond five days, where the uncertainty of weather 
forecasts tend to increase [52].

The ARX method provided more accurate predictions for heating 
demand compared to the constant and linear methods, although the 
NRMSE differences between all tested methods were only between 0.1% 
and 0.8%, as shown in Table 4. However, using operational data over 

longer periods than in this study would better highlight the differences 
between the methods used. The ARX outperformed the other methods 
due to its compatibility with the stationary nature of the heating demand 
and its dependence on the outdoor temperature. For this reason, pre
vious studies [53–55] also used ARX for heating demand forecasting in 
buildings. Moreover, as seen in Section 2.4, the ARX was relatively 
simple to implement, but may require to be re-adjusted due to different 
seasonal patterns of the heating demand throughout a year or due to 
changes in heating and electricity prices. Regarding the forecasting of 
the cooling demand, no large differences were obtained across the 
forecasting methods assessed in this study.

The estimation of the current fouling thermal resistance (see Table 3) 
and the operational costs of the HPS under different fouling levels (see 
Fig. 12) could be applied for predictive maintenance. This involves 
providing a cost-effective plan that specifies the timing and which spe
cific heat pump within the system the CIP should be applied to. Here, the 
results from the optimized and forecasted operation of the system from 
the proposed framework will need to be complemented with informa
tion about CIP costs, CIP effectiveness, and forecasted values of heating 
prices, cooling prices as well as fouling thermal resistance. Attempts of 
forecasting fouling for model-based predictive maintenance in large- 
scale heat pumps was done in an earlier study [56]. However, further 
research is needed in that direction since no studies were found in the 
literature where model-based predictive maintenance was continuously 
applied in operating large-scale heat pump systems.

Fig. 11. Operational costs and savings when operating based on the schedule optimization instead of BAU operation, accounting for different TES volumes.

Fig. 12. Operational costs and savings when operating based on the schedule optimization instead of BAU operation, accounting for different fouling thermal 
resistances.
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5. Conclusions

The present study aimed at reducing the operational cost of a com
mercial large-scale heat pump system by using a digital twin-based 
framework for online operation optimization. The system supplied dis
trict heating as well as industrial cooling simultaneously and was 
comprised of two heat pumps, an open cooling tower and a thermal 
energy storage tank. Both heat pumps in the system were constantly 
affected by evaporator fouling. The proposed framework used a mixed- 
integer linear programming (MILP) model integrated with thermal de
mand forecasting and heat pump performance maps adjusted for 
different levels of fouling through a simulation model calibrated online. 
This model was adjusted through an initial calibration, where heat 
transfer coefficients and control dynamics in the model were adjusted, 
and a fouling calibration process, where the evaporator thermal resis
tance attributed to fouling was determined. Two periods of operation 
were assessed in this study, where the different levels of fouling were 
identified through the fouling calibration process. Three methods were 
compared for the forecasting of the heating and cooling demands, 
including a constant method, a linear method, and an autoregressive 
model with exogenous inputs. Compared to the business-as-usual oper
ation of the system, the optimization increased utilization of the thermal 
energy storage by up to 5 percentage points as a result of variable 
electricity prices. The optimization also enabled the adjustment of the 
heat pump operation based on the influence of fouling. The optimized 
operation of the system resulted in operational cost savings up to 5% 
with forecasting and 3% without forecasting, compared to its conven
tional operation. A sensitivity analysis on the impact of fouling on 
operational costs highlighted the necessity of accurate fouling repre
sentation for reliable savings estimation in the proposed scheduling 
framework. Overall, the framework demonstrated potential for cost 
reduction in large-scale heat pump systems, with savings influenced by 

forecast accuracy and prevalent fouling levels.

CRediT authorship contribution statement
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Appendix A

This appendix provides a description of the discretization process applied to the COP maps from the heat pumps included in the MILP optimization. 

The energy balance of each heat pump was described by Eq. (13). Here, the heat flow from the condenser unit Q̇HP,h
t and the heat flow to the evaporator 

Q̇HP,c
t were the sum of the heat flows from all S discretization elements Q̇HP,h

s,t and Q̇HP,c
s,t , (respectively) 

ẆHP
t = Q̇

HP,h
t − Q̇

HP,c
t ,∀t ∈ {1,…, k} (13) 

Q̇
HP,h
t =

∑S

s=1

(

Q̇
HP,h
s,t

)

, ∀t ∈ {1,…, k} (14) 

Q̇HP,c
t =

∑S

s=1

(

Q̇HP,c
s,t

)

, ∀t ∈ {1,…, k} (15) 

The heat flow to each discretization element Q̇HP,c
s,t was constrained by the cooling capacity of the element Q̇HP,c,cap

s,t multiplied by a binary variable 
uHP

s,t , as shown in Eq. (16). This binary variable was equal to 1 if the element s was active and 0 otherwise. 

Q̇HP,c
s,t ≤ Q̇HP,c,cap

s • uHP
s,t ,∀s ∈ {1,…, S}, ∀t ∈ {1,…, k} (16) 

Eq. (17) ensured that the relation between the heating supplied by all discretization elements until an element s (i.e. Q̇HP,h
s + Q̇HP,h,cap

s− 1 ) and the 

cooling supplied by all discretization elements until an element s (i.e. Q̇HP,c
s + Q̇HP,c,cap

s− 1 ) was defined in terms of the COP of this element COPHP
s . The 

value of COPHP
s , Q̇HP,c,cap

s and Q̇HP,h,cap
s for all discretization elements were obtained from the COP map described in Section 0. 

Q̇HP,h
s,t =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q̇HP,c
s,t •

COPHP
s

COPHP
s − 1

, if s = 1

(

Q̇HP,c
s,t + Q̇HP,c,cap

s− 1 • uHP
s,t

)

•
COPHP

s

COPHP
s − 1

− Q̇HP,h,cap
s− 1 • uHP

s,t , if 1 < s ≤ S
,∀t ∈ {1,…, k} (17) 

Eq. (18) was used to ensure that the discretization element s was active (i.e. uHP
s,t = 1) only when the cooling supply related to the previous element 

in the COP map Q̇HP,c
s− 1,t was equal to its cooling capacity Q̇HP,c,cap

s− 1 . 
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Q̇HP,c,cap
s− 1 − Q̇HP,c

s− 1,t −
(

1 − uHP
s,t

)
•
∑S

s=1
Q̇HP,c,cap

s ≤ 0,∀s ∈ {2,…, S},∀t ∈ {1,…, k} (18) 
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of stratified thermal storage for MILP-based energy management systems. Appl. 
Energy May 2022;314:118890. https://doi.org/10.1016/J. 
APENERGY.2022.118890.

[52] Danish Meteorological Institute. “Be aware of the uncertainty in the weather 
forecast (in Danish),” Copenhagen, Denmark [Online]. Available, https://www.dm 
i.dk/nyheder/2020/bliv-klog-paa-usikkerheden-i-vejrudsigten; 2020 [accesed 5 
January 2024].

[53] Powell KM, Sriprasad A, Cole WJ, Edgar TF. Heating, cooling, and electrical load 
forecasting for a large-scale district energy system. Energy Sep. 2014;74:877–85. 
https://doi.org/10.1016/J.ENERGY.2014.07.064. no. C.

[54] Sarwar R, Cho H, Cox SJ, Mago PJ, Luck R. Field validation study of a time and 
temperature indexed autoregressive with exogenous (ARX) model for building 
thermal load prediction. Energy Jan. 2017;119:483–96. https://doi.org/10.1016/ 
J.ENERGY.2016.12.083.
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